Abstract

ABSTRACTSolid mixing has a great influence on heat transfer and reaction processes in fluidized bed reactors; however, a review shows that the quantitative results are scattered. In this work, the mechanisms of solid mixing in a bubbling fluidized bed are investigated by numerical simulation. A three‐dimensional discrete element model (DEM)–computational fluid dynamic (CFD) simulation tool is developed and employed to investigate solid mixing behaviors due to the passage of isolated bubbles, continuous bubbles, and interacting bubbles. The vital role of bubbles on solid mixing has been clearly demonstrated. The results show that: (a) solid mixing in the vertical direction is dominant; (b) when a bubble forms near the air distributor, the continuous jet directly penetrates into the bubble, leading the bubble growing up; (c) lateral solid transport is promoted by bubble interaction, especially when the bubble sizes are different. © 2011 Curtin University of Technology and John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.