Abstract

Thin film silicon solar cells are the better choice due to their low cost as compared to the crystalline solar cells. However, thin film silicon solar cells are suffering from a problem of weak absorption of incident light and hence, light trapping mechanism is essential for the harvesting of maximum solar radiation. In this paper, we present the performance of solar cell using an efficient back reflector composed of multilayer thin film (SiO2/Si3N4) and a diffraction grating. The use of a back reflector showed enhanced light absorption due to the folding of unabsorbed light coming to it after crossing the active region in a wide wavelength range. Further, the effect of active layer thickness and grating height were also discussed for the optimal performance of the solar cell. In the case of magnetic transverse mode, a relative enhancement in cell efficiency about 79 and 21% respectively have been observed with respect to a planar and SC4 solar cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.