Abstract

BackgroundPlant microbiomes and soil are bridged by rhizobacteria, maintaining and improving plant health and growth in different aspects. This study was conducted in the field station of the Guangxi University, Fusui, China. We investigated soil nutrients, root morphology and rhizosphere bacterial composition, and community structures in 18 sugarcane genotypes concerning sugar content under the same environmental condition.ResultsMost of the rhizosphere microbiomes of these genotypes exhibited similar bacterial compositions. However, the evaluated genotypes harbored a significant effect and difference in the abundance of operational taxonomic units and bacterial composition in the rhizosphere compartments. Alpha diversity analysis on the rhizosphere microbiome showed a significant difference in the bacterial diversity (Shannon index, p < 0.001) and OTU richness (Chao1, p < 0.001). The principal coordinate analysis (PCoA) and hierarchical cluster analysis revealed that the genotype replicated samples grouped, indicating their similarity. Besides, these genotypes also differed significantly in terms of root structure and soil properties. A significant genotypic effect (p < 0.05) was found in the root traits except for rooting depth. The soil chemical properties were significantly different among the evaluated genotypes. Furthermore, sucrose content was strongly correlated with the total root length (TRL) and rooting depth. Genotypes (FN-1702, GUC-3, ZZ-13, ZZ-10, ZZ-6) were the best performing and distinct in bacterial diversity, root structure, soil parameters and sucrose content.ConclusionThe results showed a closely related and highly conserved bacterial community of the rhizosphere microbiome. The rhizosphere microbiome diversity and related bacterial communities were highly associated with the relevant plant taxa, probably at the order level. As a result, it is possible to conclude that the host genotype and the same environmental condition influenced the rhizosphere microbiome via root phenes. Future research regarding plant phenes and microbiome functional groups could be considered an essential factor.Graphic abstract

Highlights

  • Plant microbiomes and soil are bridged by rhizobacteria, maintaining and improving plant health and growth in different aspects

  • Microbial diversity present in rhizosphere contains different types of microorganisms like bacteria, fungi, viruses, and algae exhibiting their interaction with the host plants by influencing the roots and vice versa the plant root secretions effect the microbial activity [3]

  • Measurement of root structure and sucrose content The genotypes evaluation was mainly focused on the underground parameters and the rhizospheric bacterial diversity

Read more

Summary

Introduction

Plant microbiomes and soil are bridged by rhizobacteria, maintaining and improving plant health and growth in different aspects. Terrestrial plants possess complex interconnected microbiota communities such as the root microbiota and rhizosphere adhered to roots [1]. The rhizosphere is the soil adjacent to plant roots ranging 1–3 mm providing habitat for root–microbe interaction that included up to ­1011 microbial cells per gram root and more than. Microbial diversity present in rhizosphere contains different types of microorganisms like bacteria, fungi, viruses, and algae exhibiting their interaction with the host plants by influencing the roots and vice versa the plant root secretions effect the microbial activity [3]. The rhizosphere microbiome is presumed to be a bridge between plant and soil microbiomes that benefits the host plant’s health and soil fertility [4,5,6]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call