Abstract
Numerical simulations of two-phase flow induced fluctuating forces at a pipe bend have been carried out to study the characteristics of multiphase flow induced vibration (FIV). The multiphase flow patterns and turbulence were modelled using the volume of fluid (VOF) method and the k−ϵ turbulence model respectively. Simulations of seventeen cases of slug and churn flows have been carried out showing the effects of superficial gas and superficial liquid velocities. The simulations results show good agreement of the volume fraction fluctuation frequencies of slug and churn flows with the reported experiment. In addition, the vibration characteristics of the excitation force have been accurately captured. The simulation results show that the predominant frequency of fluctuations of force decreases and the RMS of force fluctuation increases with the increase of superficial gas velocity. On the other hand, both predominant frequency and the RMS of force fluctuations increases with the increase of superficial liquid velocity. Increase of gas fraction narrows the range of frequency ranges, while increasing the liquid expands the frequency ranges of force fluctuations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.