Abstract

The influence of grain boundaries on material deformation in Ni3Al was investigated by relating the material pile-up at grain boundaries and the propagation of slip across grain boundaries to the misorientation between the corresponding grains. Indentation tests were carried out using micro- and nanoindentation at distances shorter than the radius of indent size from a grain boundary on Ni3Al. The indents were observed using scanning electron microscopy and non-contact-mode atomic force microscopy. Repeated experimentation did not reveal a rising trend of hardness near grain boundaries, indicating that hardness is not a sensitive parameter to measure grain boundary strengthening effects. However, it was observed that the slip transfer behavior across a grain boundary has a strong dependence on a local misorientation factor m′ relating the misorientation of slip planes and slip directions on either side of the grain boundary. This result agrees with the fundamental assumption in the physical explanation of the Hall–Petch effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.