Abstract

This article presents an analytical magnetic equivalent circuit (MEC) modeling approach for a six-phase surface-mounted permanent magnet (SPM) machine equipped with fractional slot concentrated winding (FSCW) for integrated onboard chargers. For the sake of comparison, the selected asymmetrical six-phase slot/pole combinations with the same design specifications and constraints are first designed based on the parametric MEC model and then optimized using a multiobjective genetic algorithm (MOGA). The commercial BMW i3 design specifications are adopted in this article. The main focus of this study is to achieve optimal design of the SPM machine considering both the propulsion and charging performances. Thus, a comparative study of the optimization cost functions, including the peak-to-peak torque ripple and core losses under both motoring and charging modes and electromagnetic forces (EMFs) under charging, is conducted. In addition, the demagnetization capability in the charging mode and the overall cost of the employed machines are optimized. Since the average propulsion torque is crucial in electric vehicle (EV) applications, it is maintained through the design optimization process. Furthermore, finite element (FE) simulations have been carried out to verify the results obtained from the analytical MEC model. Eventually, the effectiveness of the proposed design optimization process is corroborated by experimental tests on a 2-kW prototype system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.