Abstract

Ce3+, Tb3+ and Ce3+-Tb3+ activated Ba3Y2(B2O5)3 phosphors were synthesized by a sol-gel pyrolysis method. The synthesized phosphors were investigated using X-ray diffraction (XRD) analysis, photoluminescence emission and excitation spectra and luminescence decay curves. In the Ce3+ activated Ba3Y2(B2O5)3 samples, two different Ce3+ centers (marked as Ce(1) and Ce(2)) could exist. The Ba3Y2(B2O5)3:Tb3+ phosphor shows some emission peaks at ∼350–650 nm among which the green emission peak at 540 nm is the strongest. For the Ba3Y2(B2O5)3:Ce3+, Tb3+ co-doped phosphor, the existence of energy transfer process from Ce3+ center to Tb3+ center is confirmed and the interaction mechanism between Ce3+ and Tb3+ in Ba3Y2(B2O5)3:Ce3+,Tb3+ system is dipole-dipole interaction based on Inokuti–Hirayama (IH) model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.