Abstract

UV filters as an important class of emerging organic pollutants are continuously released into and transported between the aquatic environments. So, the removal of these compounds from aquatic environments is of great importance. This study was conducted to evaluate the simultaneous photodegradation of three widely used UV filter compounds (4-methylbenzylidene camphor, 2-ethylhexyl 4-(dimethylamino) benzoate, ethylhexyl methoxycinnamate), in an aqueous environment under sunlight and Ag@AgCl photocatalyst integrated with plasmonic effect. The plasmonic Ag@AgCl nanocomposite was constructed via photochemical conversion and photoreduction. The enhanced photocatalytic performance can be attributed to the surface plasmon resonance effect of the silver nanoparticles and the hybrid effect caused by AgCl. For the monitoring of the target compounds' degradation before and after photodegradation, an optimized method based on membrane-protected micro-solid-phase extraction coupled with gas chromatography-mass spectrometry (GC-MS) was employed. The simultaneous degradation of selected UV filters was also further investigated in contaminated real samples (river water) and the results showed that the matrix constituents could diminish the photocatalytic degradation efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.