Abstract

Lipids are the main component of the cell membrane. They not only provide structural support of cells but also directly participate in complex cellular metabolic processes. Lipid signaling is an important part of cell signaling. Evidence showed that abnormal cellular metabolism may induce lipids changes. Besides, owing to single cell heterogeneity, it is necessary to distinguish different behaviors of individual cells. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a sensitive surface analysis technique with high spatial resolution, which is useful in single cell surface analysis. Herein, we used ToF-SIMS to investigate silver nanoparticle induced lipids changes on the surface of single macrophage cells. Delayed extraction mode of ToF-SIMS was used to simultaneously obtain high mass resolution of mass spectra and high spatial resolution of single cell chemical imaging. Principle component analysis (PCA) results showed good agreement with the cytotoxicity assay results. Clear distinctions were observed between the cell groups treated with high or low dose of silver nanoparticles. The loadings plots revealed that the separation was mainly due to changes of cholesterol and diacylglycerol (DAG) as well as monoacylglycerol (MAG). Meanwhile, the chemical mapping of single cell components showed that cholesterol and DAG tend to migrate to the surrounding of the cells after high dose silver nanoparticles (Ag NPs) treatment. Our results demonstrated the feasibility of ToF-SIMS for characterizing the changes of the lipids on a single cell surface, providing a better understanding of the mechanism of cell-nanoparticle interactions at the molecular level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.