Abstract

Low emissivity (low-E) coatings consisting of dielectric/silver/dielectric multi-layer stacks are applied to large-area architectural glazing to reduce heat losses from buildings. In this work TiO2/Ag/TiO2 stacks were deposited onto soda-lime glass by pulsed DC reactive magnetron sputtering. The coatings were annealed in the range 100–600°C to study silver diffusion through neighbouring layers. Depth-profiling analysis was performed on these samples using time-of-flight secondary ion mass spectrometry and selected samples were also analysed by X-ray photoelectron spectroscopy and Rutherford backscattering spectrometry. Fick’s second diffusion law was used to find diffusion coefficient values and to investigate the temperature dependence of silver diffusion. To investigate film morphology and composition, scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) were performed. The purpose of this study is the requirement for the understanding of the issue of silver diffusion during annealing treatments used in glass fabrication and the results obtained show that silver diffuses through the adjacent layers in a stack during heat treatment. However, in the temperature range investigated, the diffusion rates did not follow an Arrhenius dependence. At higher temperatures and longer annealing times sodium also diffuses from the glass into the coating, replacing the silver between the titania layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.