Abstract

Photoluminescence measurements on solar cells are usually carried out under open-circuit conditions. We report here on an innovative approach, in which the samples are simultaneously illuminated and DC-biased, so that the luminescence can be monitored under several operating points, that is to say several injection levels, ranging from short-circuit conditions to the light-emitting regime of the device. The experiments were performed on in-house made c-Si/a-Si:H heterojunction solar cells illuminated by a continuous green laser diode and positively biased. The luminescence spectra obtained this way were compared to those obtained with no light excitation source, which corresponds to usual electroluminescence mode and dark J (V ). Firstly, the obtained luminescence spectra have shown the expected exponential dependence on the applied voltage. Furthermore, given that the amplitude of the emitted luminescence is proportional to the radiative recombination rate, this approach enables to indirectly characterise the non-radiative recombination phenomena. In the case of HJ solar cells with intrinsic thin layers processed on high quality FZ-wafers, non-radiative recombination is dominated by the defects at the c-Si/a-Si:H interface. The luminescence measurements presented here therefore give information on the quality of the surface passivation. An estimation of the interface defect density was achieved by comparing our experimental results with modelling.

Highlights

  • In recent years, luminescence techniques have become more and more popular for the monitoring of defects in semi-conductor materials and solar cells

  • The maximal luminescence intensity occurs at 1130 nm, which corresponds to band-toband radiative recombination in crystalline silicon (c-Si)

  • If the amorphous silicon were to contribute to the luminescence, it would emit below 950 nm, where no luminescence is detected

Read more

Summary

Introduction

Luminescence techniques have become more and more popular for the monitoring of defects in semi-conductor materials and solar cells. Since luminescence provides a fast and non-destructive assessment of radiative recombination, it turns out to be an indirect means for characterising non-radiative phenomena, which are for the cells in question, dominated by interface recombinations. Depending on whether the samples are optically or electrically biased, luminescence is referred to as either photoluminescence (PL) or electroluminescence (EL). When the optical power (respectively the electrical one) is increased, the amount of photogenerated (injected) carriers increases, an enhanced recombination – including radiative recombination – rate, which eventually enhances the luminescence signal

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call