Abstract

Powder bed fusion (PBF) is one of the most popular techniques in additive manufacturing (AM). The PBF technique of selective laser melting (SLM) consolidates powder layer by layer using a laser as the energy source. This technique ensures the processes capability of fabricating components with internal and external complex geometries, which could be challenging to make with conventional manufacturing methods. However, the cyclic heating and cooling inherent in this process give rise to the buildup of residual stresses, which can distort or completely deform the part. In this work, a screening build with nine factors was designed to investigate the effects of component size, support structure, and energy input on the build completion and average distortion induced by the inherent residual stress. Experimental results indicated that support hatch spacing, part thickness, and support contact spacing played dominant roles in the final quality (i.e. resultant deformation) of the built parts. The identified significant factors from this study can be carefully selected to increase the success rates of single builds and improve the qualities (i.e. geometric accuracy) of the final products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call