Abstract

FINEX process, which utilizes hydrogen (H2) as a part of reductants, has emerged as an environmentally sustainable ironmaking process to meet the upcoming carbon-neutral era. In the H2-enriched atmosphere, local slag holdup in the carbonaceous particle bed may increase due to the increased melting temperature of slags by the rapid reduction of iron oxide and the resulting lower wettability of the carbonaceous materials by liquid slag. In-situ SiC formation on the carbon surface gains much attention as a method to reduce the slag holdup. In this study, as a fundamental study, we investigated the SiC formation on the surface of a graphite substrate under a CO-H2-SiO gas environment at 1873 K. It was found that as the partial pressure of H2 increased, the penetration depth of a SiC layer formed on the graphite surface increased, and the surface roughness became enhanced. A reaction rate analysis revealed that the H2-CO gas mixture accelerated the SiC formation on the graphite surface compared to the N2-CO gas mixture. This effect was attributed to the high bimolecular diffusivity of H2-CO. Our results demonstrate that under a CO-H2-SiO gas environment, the fast diffusion of H2 gas through micropores in the graphite significantly enhances the formation of SiC on the graphite surface. The results obtained in this study show that the acceleration of SiC formation under an H2-enriched atmosphere would improve the wettability of molten slag and reduce the slag holdup in the FINEX process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.