Abstract

The short-term stability of high efficiency polymer : nonfullerene solar cells was investigated by employing a quick (ten cycles) current density-voltage (J-V) cycling method. Polymer : nonfullerene solar cells with initial power conversion efficiency (PCE) of >10% were fabricated using bulk heterojunction (BHJ) films of poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5b′]dithiophene))-alt-(5,5-(1′,3′-di-2-thienyl-5,7′-bis(2-ethylhexyl)benzo[1′,2′-c:4′,5′-c′]dithiophene-4,8-dione))] (PBDB-T) and 3,9-bis(2-methylene-((3-(1,1-dicyanomethylene)-6/7-methyl)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno[1,2-b:5,6-b′]dithiophene (IT-M). One set of the BHJ (PBDB-T : IT-M) films was thermally annealed at 160 oC for 30min, while another set was used without any thermal treatment after spin-coating. The quick J-V scan (cycling) measurement disclosed that the PCE decay was relatively slower for the annealed BHJ layers than the unannealed (as-cast) BHJ layers. As a result, after ten cycles, the annealed BHJ layers delivered higher PCE than the unannealed BHJ layers due to higher and more stable trend in fill factor. The present quick J-V cycling method is simple but expected to be useful for the prediction of short-term stability in organic solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call