Abstract

Boundary-layer measurements realized by laser velocimetry are presented for a Mach 2.9, two-dimensional, shock-wave/turbulent boundary-layer interaction containing an extensive region of separated flow. Mean velocity and turbulent intensity profiles were obtained from upstream of the interaction zone to downstream of the mean reattachment point. The superiority of the laser velocimeter technique over pressure sensors in turbulent separated flows is demonstrated by a comparison of the laser velocimeter data with results obtained from local pitot and static pressure measurements for the same flow conditions. The locations of the mean separation and reattachment points as deduced from the mean velocity measurements are compared to oil-flow visualization results. Representative, velocity probability density functions obtained in the separated flow region are also presented. Critical to the success of this investigation were: (1) the use of Bragg cell frequency shifting and (2) artificial seeding of the flow with submicron light-scattering particles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call