Abstract
This study is stimulated by the discovery of high sensitivity of nanostructured layers of organic semiconductor α′-BEDT-TTF)2IxBr3-x [BEDT-TTF = bis(ethylendithio)-tetrathiafulvalene] to heat radiation. We present the development and assessment of the flexible lightweight highly sensitive film-based thermistor as (i) a separate sensor, (ii) a sensor integrated in e-textile and (iii) a sensor embedded in a wireless sensor node. Wireless Sensor Networks (WSN) and Internet of Things (IoT), being two promising technologies, have already been applied in a number of monitoring scenarios. In spite of great progress achieved in sensing technologies and wireless embedded systems there is a gap in multidisciplinary research aimed at investigating the aggregate potential of these technologies. Experimental results demonstrate that the developed bi-layer organic thermistor has high potential for environmental and biomedical monitoring. They can be used as a part of wearable units or as sensing units on board of wireless sensing devices.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.