Abstract

We found Oxygen-doped GaAs crystals to be suitable materials for CO 2 laser optical component preparation, with application at 10.6 μm. An optical transmission of 55% in the IR spectrum range, between 2 and 15 μm has been reached for such a GaAs type material. The GaAs crystals that we have analysed were grown by two procedures: Horizontal Bridgman (HB) and Liquid Encapsulated Czochralski (LEC). The HB method has been used for obtaining pure (undoped) crystals, while the oxygen-doped GaAs ingots were grown by LEC technique. The two types of samples processed in the same manner as regards mechanical polishing and chemical etching, which were investigated by Hall measurements, optical transmission spectrometry and elastic recoil detection analysis (ERDA) technique. The GaAs:O (LEC) has near semi-insulating properties as can be observed from the results of the electrical resistivity and Hall effect measurements. The ERDA spectrum shows an intense signal of oxygen in the bulk of GaAs:O (LEC) crystals, while the oxygen signal is not present in the ERDA spectrum of the undoped GaAs (HB). We consider that these results could recommend the ERDA technique as a possible qualitative and quantitative analysis in an ion-beam accelerator for oxygen content in oxygen-doped GaAs crystals. The analysis is not sensitive to the native oxide, as could be seen by measuring GaAs (HB) undoped crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call