Abstract

Nonlinear dynamics of a microwave optoelectronic oscillator was investigated for the first time with the use of time series analysis. The detailed study of the generated microwave waveforms showed a route from stable monochromatic oscillations to noise through a series of bifurcations. The oscillator demonstrated the periodic and chaotic dynamics in the intermediate regimes of self-generation. Peculiarities of the signals and their spectra for the chaotic and noise regimes were found. The chaotic and noise dynamics were proven with the Grassberger-Procaccia method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.