Abstract

Segregation of AlxIn1-x liquid binary alloys is systematically investigated from the energetic point of view using the electronic theory of metals. The free energy of mixing is calculated at different thermodynamic states characterized by temperatures for the full range of concentration by using the perturbation approach. The interionic interaction is described by a local pseudopotential. This study enables us to predict the correct miscibility gap as well as critical temperature (T=1160K) and critical concentration (x=0.5) of segregation for the concerned alloys. These results agree well with available experimental data. Most importantly, results of our calculations have precisely identified for the first time that, the volume dependent term of the energy of mixing is mostly responsible for the total energy of mixing to be positive, which is one of the most significant indicators of segregation of liquid metals in binary alloys.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call