Abstract
The fission yeast Schizosaccharomyces pombe (Sch. pombe) has been proposed as a possible cloning host for both mammalian artificial chromosomes (MACs) and mammalian genomic libraries, due to the large size of its chromosomes and its similarity to higher eukaryotic cells. Here, it was investigated for its ability to form telomeres from human telomere sequence and to stably maintain long stretches of alphoid DNA. Using linear constructs terminating in the telomere repeat, T2AG3, human telomere DNA was shown to efficiently seed telomere formation in Sch. pombe. Much of the human telomeric sequence was removed on addition of Sch. pombe telomeric sequence, a process similar to that described in S. cerevisiae. To investigate the stability of alphoid DNA in fission yeast, bacterial artificial chromosomes (BACs) containing 130 and 173 kb of alphoid DNA were retrofitted with the Sch. pombe ars1 element and ura4+ marker using Cre-lox recombination. These alphoid BACs were found to be highly unstable in Sch. pombe deleting down to less than 40 kb, whilst control BACs of 96 and 202 kb, containing non-repetitive DNA, were unrearranged. Alphoid DNA has been shown to be sufficient for human centromere function, and this marked instability excludes Sch. pombe as a useful cloning host for mammalian artificial chromosomes. In addition, regions containing repetitive DNA from mammalian genomes may not be truly represented in libraries constructed in Sch. pombe.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.