Abstract

Sandwich panels are widely used for energy absorbing applications in cases of low and high velocity impacts. The core itself is capable of absorbing energy by progressive collapse, while the skins are necessary for uniformly distributing the local vertical load over the impacted area as well as for the introduction of overall panel bending resistance. In the present work, the failure response of sandwich panels with open lattice cellular cores subjected to low velocity impact is investigated. Experimental tests are performed using a mass drop testing machine. Additionally, a three-dimensional finite element model of the sandwich panels–impactor system is developed using commercial Finite Element (FE) codes. The core homogenisation is introduced in order to improve the efficiency of the FE analysis by reducing the computational time. Numerical results correlate well with experimental data, enabling detailed understanding of the parameters affecting the initiation and propagation of impact damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.