Abstract

Within the framework of the 6 month WANO program, small samples were cut from the inside surface of the Kozloduy NPP unit 2 reactor pressure vessel to assess the actual condition of the pressure vessel material before and after annealing. The actual values of the weld metal characteristics required for estimating radiation-limited lifetime—the ductile-to-brittle transition temperature (DBTT) in the initial state ( T ko) and the phosphorus and copper contents which affect the radiation stability of steel—were not determined during manufacturing. The Kozloduy unit 2 pressure vessel had no surveillance program. Radiation stability was evaluated using dependencies based on analysis results for surveillance samples taken from other VVER-440 reactors. For this reason, the actual pressure vessel characteristics and their changes in the course of reactor operation, as well as comparison of experimental with calculated data were the principle objectives of the study. Instrumented impact tests were carried out on sub-size specimens of base and weld metal. Correlation dependencies were used with standard tests to determine DBTTs for the base and weld metal (in accordance with Russian standards): base metal before annealing 40 °C, after annealing 16 °C; weld metal before annealing 212 °C, after annealing 70 °C. The estimated value of T ko, for the initial, unirradiated weld metal, was 50 °C. The experimental results were compared with a prediction of the extent of radiation-induced embrittlement of Kozloduy unit 2 pressure vessel materials. It was confirmed that radiation-induced embrittlement of the base metal does not impose any limits on the radiation-limited lifetime of the pressure vessel. The predicted increase in the DBTT of the weld metal as a result of irradiation (about 165 °C) is practically equal to the experimental result (162 °C). However, the value of T f obtained from tests before annealing (212 °C) is about 40 °C higher that the estimated value, i.e. the calculation does not produce a conservative estimate. This was explained by a low estimate of T ko (10 °C), which had been calculated using data from chemical analysis of the weld metal, performed by the manufacturer. The investigations on the samples, however, yielded an estimated value of T ko = 50 °C. The effectiveness of annealing in restoring the mechanical properties of irradiated VVER-440 reactor pressure vessels was confirmed. Recovery annealing lowered the DBTT of the weld metal by 85% or more of its radiation-induced shift.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call