Abstract
The development of genotypes that can tolerate high levels of salt is crucial for the efficient use of salt-affected land and for enhancing crop productivity worldwide. Therefore, incorporating salinity tolerance is a critical trait that crops must possess. Salt resistance is a complex character, controlled by multiple genes both physiologically and genetically. To examine the genetic foundation of salt tolerance, we assessed 16 F1 hybrids and their eight parental lines under normal and salt stress (15 dS/m) conditions. Under salt stress conditions significant reduction was observed for plant height (PH), bolls/plant (NBP), boll weight (BW), seed cotton yield (SCY), lint% (LP), fiber length (FL), fiber strength (FS), potassium to sodium ratio (K+/Na+), potassium contents (K+), total soluble proteins (TSP), carotenoids (Car) and chlorophyll contents. Furthermore, the mean values for hydrogen peroxide (H2O2), sodium contents (Na+), catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), and fiber fineness (FF) were increased under salt stress. Moderate to high heritability and genetic advancement was observed for NBP, BW, LP, SCY, K+/Na+, SOD, CAT, POD, Car, TSP, FL, and FS. Mean performance and multivariate analysis of 24 cotton genotypes based on various agro-physiological and biochemical parameters suggested that the genotypes FBS-Falcon, Barani-333, JSQ-White Hold, Ghauri, along with crosses FBS-FALCON × JSQ-White Hold, FBG-222 × FBG-333, FBG-222 × Barani-222, and Barani-333 × FBG-333 achieved the maximum values for K+/Na+, K+, TSP, POD, Chlb, CAT, Car, LP, FS, FL, PH, NBP, BW, and SCY under salt stress and declared as salt resistant genotypes. The above-mentioned genotypes also showed relatively higher expression levels of Ghi-ERF-2D.6 and Ghi-ERF-7A.6 at 15 dS/m and proved the role of these ERF genes in salt tolerance in cotton. These findings suggest that these genotypes have the potential for the development of salt-tolerant cotton varieties with desirable fiber quality traits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.