Abstract

Low salinity water flooding (LSW) has been proven to be a low-cost and accessible enhanced oil recovery method in conventional reservoirs. However, its applications and potentials in tight reservoirs are mysterious in tight sandstone reservoirs due to the low porosity and low permeability.A series of laboratory experiments were designed to investigate ionic composition and salinity on the performance of LSW in a tight oil formation. More specifically, zeta potential and contact angle were measured to examine rock surface charge distribution and wettability changes. Pressure-controlled mercury injection (PMI) and permeability tests were conducted to analyze the pore & throat and permeability changes during LSW injection. Thereafter, displacement experiments were implemented to analyze oil recovery under different LSW injection schemes.The experimental observation demonstrates that LSW injection expands the double electric layer on the oil/brine and rock/brine interfaces, resulting in the expected wettability modification. However, the presence of divalent ions in the LSW undermines this effect. On the other hand, the permeability reduction resulting from salinity decrease can be alleviated by introducing divalent ions into LSW. The coreflooding experiments reveal that continuous injection of monovalent brine would reduce the ultimate oil recovery. Alternatively, a mixture of monovalent and divalent ions in LSW is utilized to revive the permeability and maintain the wettability modification. Furthermore, an optimized lower divalent ion concentration is found to be conducive to refining the cutoff throat radius and achieving a higher oil recovery from tight oil reservoirs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.