Abstract
The thermal evolution process of RuO2–IrO2–SnO2 mixed oxide thin films of varying noble metal contents has been investigated under in situ conditions by thermogravimetry-mass spectrometry (TG-MS), infrared emission spectroscopy (IR) and cyclic voltammetry (CV). The gel-like films prepared from aqueous solutions of the precursor compounds RuOHCl3, H2IrCl6 and Sn(OH)2(CH3COO)2–xClx on titanium metal support were heated in an atmosphere containing 20% O2 and 80% Ar up to 600°C. Chlorine evolution takes place in a single step between 320 and 500°C accompanied with the decomposition of the acetate ligand. The decomposition of surface species formed like carbonyls, carboxylates and carbonates occurs in two stages between 200 and 500°C. The temperature of chlorine evolution and that of the final film formation increases with the increase of the iridium content in the films. The anodic peak charge shows a maximum value at 18% iridium content.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.