Abstract

Spintronic functionality in ferromagnetic materials is a next-generation technique, to be used in data storage, high-frequency communications, and logic devices with minimum energy consumption. Ultra-low energy consumption in high-speed logic devices can be envisioned by inducing ferromagnetic behavior into room temperature multiferroic materials. However, there is a scarcity of room temperature multiferroic materials which have a definite spin degree of freedom. To fully exploit these technological challenges, we introduce the induced ferromagnetism in bismuth ferrite (BiFeO3, BFO) by doping transition metal (Cr, Ni, Co) elements. Our investigation initiates with the experimental study on chemically synthesized BiFe(1−x)MxO3 samples where x = 0.0625 (6.25%) and M = Cr, Ni and Co. Experimental findings are verified by theoretical simulation using density functional theory (DFT + U) and gauge including projector augmented wave (GIPAW) based calculation. All the experimental studies are done at room temperature while the theoretical verification using DFT is carried to understand the underlying mechanism behind the magnetic behavior of doped BiFeO3. It is done by optimizing the structural parameters comparable to the room temperature values. Microstructural and magnetic properties are studied using x-ray diffraction (XRD), transmission electron microscopy (TEM) and Vibrating sample magnetometer (VSM). All these experimental studies confirm the structural changes and induced ferromagnetism with doping. X-ray photoelectron spectroscopy (XPS) verified the reason behind this ferromagnetic property on the basis of oxygen vacancy content. Electron paramagnetic resonance (EPR) spectroscopy shows the tuning of Δg values due to enhanced magnetization.The density of states (DOS) calculations were performed on BFO (band-gap 1.89 eV) after structural optimization using DFT + U method, confirm our experimental findings. Magnetic moment values change drastically with doping elements (M), i.e. almost negligible for BFO (antiferromagnetic) to maximum (2.85 μB/f.u.) for Ni-doped sample. We also compute the EPR g-tensor using GIPAW method to confirm the tuning of Δg values due to enhanced magnetization. These results can highlight the impact and importance of suitable transition element doping to induce the room temperature ferromagnetism in BiFeO3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.