Abstract

<p class="NoSpacing1"><span lang="IN">The Rod Control System is </span>employed<span lang="IN"> to adjust the position of the control rods in the reactor core </span>which corresponds with <span lang="IN">the thermal power generated in the core </span>as well as <span lang="IN">the electric power generated in the turbine. In a Pressurized Water Reactor (PWR) type nuclear power plants, the control-rod drive </span>employs <span lang="IN">magnetic stepping-type mechanism. This </span>type of <span lang="IN">mechanism consists of a pair of circular coils and latch-style jack with the armature. When the </span>electric <span lang="IN">current </span>is <span lang="IN">supplied to the coils sequentially, the control-rods</span>, which <span lang="IN">are held on the drive shaft</span>, can be driven<span lang="IN"> up</span>ward<span lang="IN"> or down</span>ward<span lang="IN"> in increments. </span>This <span lang="IN">sequential current </span>c<span lang="IN">ontrol</span> drive<span lang="IN"> system is called the Control-Rod Drive Mechanism Control System (CRDMCS) or </span>known also as <span lang="IN">the Rod Control System (RCS). The p</span>urpose of this paper is to investigate the RCS reliability <span lang="IN">of APWR </span>using <span lang="IN">the Fault Tree Analysis (FTA)</span> method<span lang="IN"> since </span>the analysis of reliability which considers<span lang="IN"> the FTA</span> for common CRDM <span lang="IN">can </span>not <span lang="IN">be found</span> in <span lang="IN">any </span>public references. <span lang="IN">The FTA method is used to model the system reliability by developing the fault tree diagram of the system. </span>The<span lang="IN"> results show that the failure of the system is very dependent on the failure of most of the individual systems. However, the failure of the system does not affect the safety of the reactor, since the reactor trips immediately if the system fails. The evaluation results also indicate that the Distribution Panel is the most critical component in the system.</span></p>

Highlights

  • The electricity load of a nuclear power plant is proportional with the output of the thermal power generation

  • In developing the fault tree diagram with Fault Tree Analysis (FTA) method, Failure Mode and Effect Analysis (FMEA) analysis is useful as an initial step in identifying the basic events

  • That table is reprocessed according to the understanding of the study of the functions and workings procedure of the components stated in the fault tree diagram model

Read more

Summary

Introduction

The electricity load of a nuclear power plant is proportional with the output of the thermal power generation. The thermal output of a nuclear power plant is controlled by the insertion or withdrawal of the control-rods into and out of the reactor core. PWR-type nuclear power plant employs Control-rod Drive Mechanism (CRDM) system based on magnetic stepping-type mechanism, to move the control-rods up and down [1]. This mechanism consists of a pair of circular coils and latch-style jacks with armature. By providing electric current through the coils sequentially, the control-rod which is attached to the drive shaft can be moved up or down in steps. The RCS is employed in PWR reactors for controlling the supply current to the coils initiated by a reactor regulating system in response to a command signal

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.