Abstract
Cerebral emboli originating in the ascending aorta are a major cause of noncardiac complications following cardiac surgery. The hemodynamics of the aortic cannula has been proven to play a significant role in emboli generation and distribution. The aim of the current study was to perform a thorough numerical investigation in order to examine the effect of the design and orientation of the cannula used during cardiopulmonary bypass on the risk to develop cerebral embolism. Hemodynamic analyses compared numerical models of 27 cases consisting of six different cannula orientations, four aortic anatomies, and three cannula designs. The cannula designs included a straight-tip (ST) cannula, a moderately curved tip cannula (TIP1 ), and a sharp-angle curved cannula (TIP2 ). Outcome measures included hemodynamic parameters such as emanating jet velocity, jet velocity drop, maximal shear stress, aortic wall reaction, emboli pathlines and distribution between upper and lower vessels, and stagnation regions. Based on these parameters, the risks for hemolysis, atheroembolism, and cerebral embolism were evaluated and compared. On one hand, the jet emerging from the ST cannula generated large wall-shear stress at the aortic wall; this may have triggered the erosion and distribution of embolic atheromatous debris from the aortic arch. On the other hand, it diverted more emboli from the clamp region to the descending aorta and thus reduced the risk for cerebral embolism. The TIP1 cannula demonstrated less shear stress on the aortic wall and diverted more emboli from the clamp region toward the upper vessels. The TIP2 cannula exhibited a stronger emanating jet, higher shear stress inside the cannula, and highly disturbed flow, which was more stagnant near the clamp region. Current findings support the significant impact of the cannula design and orientation on emboli generation and distribution. Specifically, the straight tip cannula demonstrated a reduced risk of cerebral embolism, which may be pivotal in the clinical setting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.