Abstract

Rifampicin-induced hepatotoxicity has been well recognized in animals and patients. However, it is undetectable in cultured hepatocyte monolayers in vitro at the equivalent toxic concentration in vivo. This study investigated the rifampicin-induced toxicity on rat hepatocytes in gel entrapment vs. in monolayer culture. Thiazolyl tetrazolium reduction and albumin secretion were routinely detected to identify the toxic responses of rat hepatocytes to rifampicin, while reactive oxygen species (ROS) accumulation and intracellular glutathione (GSH) content were assayed as biomarkers of oxidative stress. In addition, Nile red staining and malondialdehyde (MDA) generation were, respectively, used as endpoints for lipid accumulation and peroxidation. After treatment of hepatocytes for 96 h at a serum rifampicin concentration (12 microM), gel-entrapped rat hepatocytes showed significant cellular damage indicated by alternations of all parameters indicated above, while hepatocyte monolayers did not show severe responses. In contrast to a lack of protections by cytochrome P 450 inhibitors, the ROS scavenger (glycyrrhizic acid) and thiol compounds (N-acetylcysteine and GSH) significantly reduced rifampicin toxicity in gel-entrapped hepatocytes. It appears that gel-entrapped rat hepatocytes reflected significant hepatotoxicity of rifampicin in vivo, and this toxicity was most possibly associated with oxidative stress and lipid accumulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.