Abstract

The purpose of this study is to investigate optimal respiratory gating schemes using different numbers of gates and placements within the respiratory cycle for reduction of respiratory motion (RM) artifacts in myocardial SPECT. The 4D NCAT phantom with its realistic respiratory model was used to generate 96 3D phantoms equally spaced over a complete respiratory cycle modeling the activity distribution from a typical Tc-99m Sestamibi study with the maximum movement of the diaphragm set at 2 cm. The 96 time frames were grouped to simulate various gating schemes (1, 3, 6, and 8 equally spaced gates) and different placements of the gates within a respiratory cycle. Projection data, including effects of attenuation, collimator-detector response and scatter, from each respiratory gate and each gating scheme were generated and reconstructed using the OS-EM algorithm with correction for attenuation. Attenuation correction was done with average attenuation maps for each gate and over the entire respiratory cycle. Bull's-eye polar plots generated from the reconstructed images for each gate were analyzed and compared to assess the effect of RM. RM artifacts were found to be reduced the most when going from the ungated to the gated case. No significant difference was found in attenuation compensated images between the use of gated and average attenuation maps. Our results indicate that the extent of RM artifacts is dependent on the placement of the gates in a gating scheme. Artifacts are less prominent in gates near end-expiration and more prominent near end-inspiration. This dependence on gate placement decreases when going to higher numbers of gates (6 and higher). However, it is possible to devise a non-uniform time interval gating scheme with 3 gates that will produce results similar to those using a higher number of gates. We conclude that respiratory gating is an effective way to reduce RM artifacts. Effective implementation of respiratory gating to further improve quantitative myocardial SPECT requires optimization of the gating scheme based on the amount of respiratory motion of the heart during each gate and the placement of the gates within the respiratory cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.