Abstract
Recently, the herbicide fomesafen has frequently failed to control the troublesome weed Ipomoea nil in soybean fields in Liaoning Province, China. Hence, we collected 10 suspected resistant populations and evaluated their sensitivity to fomesafen. The results revealed various degrees of Ipomoea nil resistance to fomesafen, with a resistance index of 2.88 to 22.43; the highest value occurred in the LN3 population. Therefore, the mechanisms of the resistance in LN3 to fomesafen were explored. After fomesafen treatment, the expression levels of InPPX1 and InPPX2 genes were 4.19- and 9.29-fold higher, respectively, in LN3 than those in the susceptible (LN1) population. However, mutations and copy number variations were not detected between the two populations. Additionally, malathion pretreatment reduced the dose necessary to halve the growth rate of LN3 by 58%. Liquid chromatography with tandem mass spectrometry demonstrated that metabolism of fomesafen was significantly suppressed by malathion. Moreover, LN3 displayed increased reactive oxygen species scavenging capacity, which was represented by higher superoxide dismutase and peroxidase activities after fomesafen application than those in LN1. An orthogonal partial least squares-discriminant analysis revealed that the high resistance in LN3 could be attributed mainly to enhanced metabolism. Fortunately, the fomesafen-resistant I. nil remained sensitive to 2,4-D-ethylhexylester and bentazon, providing methods for its control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.