Abstract

Abstract Soil venting is an effective and widely used method to remediate hydrocarbonically contaminated soils. A non-isothermal model, proposed by Lingineni and Dhir (1992) to predict evaporation rates of organic contaminants in an unsaturated non-sorbing soil, was incorporated into a computer code capable of numerically analyzing multi-component diesel fuel. The program accounts for 14 major components of diesel fuel as well as for temperature variation due to evaporation of the contaminant, preheating of the venting air, and heat loss. Experiments to verify the model performance were conducted in a one-dimensional column. Temperature readings from thermocouples located in the test section were recorded during the experiment and the composition of hydrocarbons in the effluent air was also monitored. The effluent gas samples were extracted at the selected times and analyzed with the help of a gas chromatograph. The experimental temperature readings and vapor composition in the extracted samples are in general agreement with the predictions from the computer program. The results show that the diesel components are removed according to their volatility with the higher volatility components being removed first. It is also found that preheating of the venting air can significantly increase the removal rates of the components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.