Abstract
To investigate the impact of PO4 3- anionic groups, the trivalent europium ion-doped calcium molybdate (CaMoO3-PO4:xEu3+, where x = 0.5, 1.0, 1.5, 2.0, and 2.5mol%) phosphors were synthesized using the solid-state reaction method. The detailed study of the phosphor materials was carried out by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), optical diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) spectroscopy. The XRD results indicate that the substitution of PO4 3- anion and Eu3+ dopant ion did not affect the crystal structures of the CaMoO4 phosphors. Ultraviolet-visible (UV-vis) absorption analysis revealed the change of absorption edge of both un-doped and Eu3+-doped CaMoO4-PO4 phosphors. Under the 394 nm UV-excitation, the recorded PL spectra showed an intense peak at 615 nm corresponding to the Eu3+: 5D0 → 7F2 transition. The results of the Commission Internationale de l'Eclairage (CIE) diagram reported that the color of the emissions lies in the red color zone and there is no change in the CIE coordinates of the overall emission for Eu3+-doped CaMoO4-PO4 as Eu concentration changes. Thus, these observations led to finding the best red components for white light-emitting diode applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Luminescence : the journal of biological and chemical luminescence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.