Abstract
In this paper, we implement an Optical Flat Comb Source generating a coherent super-channel operating at 1 Tbps using Wavelength Division Multiplexing-Nyquist (WDM-Nyquist) and Coherent Optical-Orthogonal Frequency Division Multiplexing (CO-OFDM) approaches with 12.5 GHz channel spacing. We evaluate through simulation the performance of the two techniques for generating Dual Polarization Quadrature-Amplitude Modulation based on 16 (DP-16QAM). We first study the robustness of CO-OFDM system to the receiver constraints such as Analog-to-Digital Converters (ADCs) speed and the receiver bandwidth in Back-to-Back link (Optical Signal-to- Noise Ratio (OSNR)) and over longhaul dispersion compensated links using Standard Single Mode Fiber (SSMF). We find that CO-OFDM requires 6 Samples per Symbol (SpS) with a large receiver bandwidth (2.25× Baud rate) to achieve the same performance of WDM-Nyquist system in terms of SNR. However, the CO-OFDM system needs more than 6 SpS to achieve the same distances as WDM-Nyquist. We also study the impact of the input power level in terms of OSNR for CO-OFDM and WDM-Nyquist systems in order to evaluate the robustness of both systems to the nonlinear effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.