Abstract

We have investigated device characteristics fluctuations of deep sub-100 nm CMOS devices induced by the statistical nature of the number and position of discrete dopant atoms by using newly developed three dimensional atomistic device simulator coupled with realistic atomistic process simulator. The gate length dependence of threshold voltage and drain current fluctuations for both p- and n-MOSFETs has been calculated. Coupling of the atomistic process and device simulations enables us to perform sensitivity analysis of the threshold voltage fluctuation in terms of independent dopant contribution, such as that of the dopant in the source/drain or channel region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.