Abstract
Study of rarefied gas flow in converging and diverging cross sections is crucial to the development of micro-nozzles and micro-thrusters. In other practical cases too, a microchannel may not always be straight and may include diverging and converging sections in the flow path. In this context, isothermal rarefied gas flow in microchannels of longitudinally varying cross section is studied experimentally in this work. The primary objective is to investigate the existence of Knudsen minimum in microchannels of varying cross sections. The effect of geometrical cross section and fluid properties on the Knudsen minimum are also investigated by performing experiments on three divergence angles (4°, 8°, and 12°) and three different gases (argon, nitrogen, and oxygen) to prove the robustness of the result. The Knudsen minimum, which is one of the characteristic features of rarefied flows, is experimentally observed for the first time in a microchannel of varying cross section. The position of the Knudsen minimum (at Kn ≈ 1) is seen to depend only weakly on the divergence angle and fluid properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.