Abstract

Photosynthesis is a fundamental process used by Nature to convert solar energy into chemical energy. For the last twenty years, many solutions have been explored to provide electrical power from the photosynthetic chain. In this context, the coupling between microalgae and exogenous quinones is an encouraging strategy because of the capability of quinones to be reduced by the photosynthetic chain. The ability of a quinone to be a good or bad electron acceptor can be evaluated by fluorescence measurements. Fluorescence analyses are thus a convenient tool helping to define a diverting parameter for some quinones. However, this parameter is implicitly designed on the basis of a particular light capture mechanism by algae. In this paper, we propose to revisit previous fluorescence experimental data by considering the two possible mechanisms (lake vs. puddle) and discussing their implication on the conclusions of the analysis. In particular, we show that the maximum extraction efficiency depends on the mechanism (in the case of 2,6-dichlorobenzoquinone – 2,6-DCBQ, (0.45 ± 0.02) vs (0.61 ± 0.03) for lake and puddle mechanisms respectively) but that the trends for different quinones remain correlated to the redox potentials independently of the mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.