Abstract

Gas fermentation is a technology for producing platform chemicals as well as fuels and one of the most promising alternatives to petrochemicals. Medium-chained acids and alcohols such as hexanoate and hexanol are particularly interesting due to their versatile application. This study elucidated the pathway of chain elongation in native C6 compound-producing acetogens. Essential genes of Clostridium carboxidivorans for synthesis of medium-chained acids and alcohols were identified in order to demonstrate their catalytic activity in the acetogenic model organism Acetobacterium woodii. Two such gene clusters were identified, which are responsible for conversion of acetyl-CoA to butyryl-CoA by reverse β-oxidation. Using RT-PCR it could be demonstrated that only genes of cluster 1 are expressed constitutively with simultaneous formation of C6 compounds. Based on genes from C. carboxidivorans, a modular hexanoyl-CoA synthesis (hcs) plasmid system was constructed and transferred into A. woodii. With the recombinant A. woodii strains AWO [pPta_hcs1], AWO [pPta_hcs2], AWO [pTet_hcs1], and AWO [pTet_hcs2] butyrate and hexanoate production under heterotrophic (1.22–4.15 mM hexanoate) and autotrophic conditions (0.48–1.56 mM hexanoate) with both hcs clusters could be detected. hcs Cluster 1 from C. carboxidivorans was transferred into the ABE-fermenting strain Clostridium saccharoperbutylacetonicum as well. For further analysis, genes were also cloned into the hcs plasmid system individually. The resulting recombinant C. saccharoperbutylacetonicum strains with just individual genes neither produced hexanoate nor hexanol, but the strains containing the entire gene cluster were capable of chain elongation. A production of 0.8 mM hexanoate and 5.2 mM hexanol in the fermentation with glucose could be observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call