Abstract

This paper discusses the electrodeposition of thin copper (Cu) films on stainless steel substrates using pulse-reverse waveforms and the suitability of such films for electrocatalytic conversion of carbon dioxide (CO2) to hydrocarbon products such as methane and ethylene. Activation of these Cu layers through thermal oxidation and subsequent electrochemical reduction is also explored as a means of tuning selectivity toward higher hydrocarbons. An appreciable benefit in terms of overall hydrocarbon selectivity versus hydrogen evolution and other undesirable side reactions was observed from the use of pulsed methods, and the use of thermal activation resulted in a strong shift in the hydrocarbon product distribution from methane to ethylene.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.