Abstract

Bacteria and their bacteriophages coexist and coevolve for the benefit of both in a mutualistic association. Multiple mechanisms are used by bacteria to resist phages in a trade-off between survival and maintenance of fitness. In vitro studies allow inquiring into the fate of virus and host in different conditions aimed at mimicking natural environment. We analyse here the mutations emerging in a clinical Pseudomonas aeruginosa strain in response to infection by Ab09, a N4-like lytic podovirus and describe a variety of chromosomal deletions and mutations conferring resistance. Some deletions result from illegitimate recombination taking place during long-term maintenance of the phage genome. Phage variants with mutations in a tail fiber gene are selected during pseudolysogeny with the capacity to infect resistant cells and produce large plaques. These results highlight the complex host/phage association and suggest that phage Ab09 promotes bacterial chromosome rearrangements. Finally this study points to the possible role of two bacterial genes in Ab09 phage adhesion to the cell, rpsB encoding protein S2 of the 30S ribosomal subunit and ORF1587 encoding a Wzy-like membrane protein involved in LPS biosynthesis.

Highlights

  • Bacteriophages play an important role in shaping the bacterial genome by exerting a selective pressure [1]

  • P. aeruginosa PcyII-10 and PAO1 were infected by Ab09 at a multiplicity of infection (MOI) of 0.001 or 0.01 before plating the mixture in soft agar on Luria-Bertani (LB) solid medium and incubating for 72h at 37 ̊C

  • Eleven variants were kept at P3 for storage at -80 ̊C in glycerol, whole genome sequence (WGS) analysis and phenotypic characterization (Fig 1)

Read more

Summary

Introduction

Bacteriophages play an important role in shaping the bacterial genome by exerting a selective pressure [1]. Bacterial resistance to bacteriophage is principally mediated by modification of the phage receptors other mechanisms can play a role by blocking the viral entry and multiplication [2]. A large number of new antiphage defense systems present in multicomponent defense islands (among which restriction-modification and CRISPR-Cas systems) have been described [3,4]. In return phage counteracts the defense mechanisms by developing different strategies [5]. Long-term phage/bacteria arm-race has been extensively investigated in the laboratory, mostly using coevolution in chemostats, and a few studies have observed coevolution in natural environment [6,7].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call