7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1002/pola.27197
Copy DOIPublication Date: Apr 22, 2014 | |
Citations: 23 |
This work uses a simple “grafting through” approach in the preparation of anhydrous poly(vinylidene fluoride) (PVDF)-g-PVTri polymer electrolyte membranes (PEMs). Alkaline-treated PVDF was used as a macromolecule in conjunction with vinyltriazole in the graft copolymerization. The obtained polymer was subsequently doped with triflic acid (TA) at different stoichiometric ratios with respect to triazole units and the anhydrous PEMs (PVDF-g-PVTri-(TA)x) were prepared. All samples were characterized by FTIR and 1H NMR. The composition of PVDF-g-PVTri was determined by energy dispersive spectroscopy. Thermal properties of the membranes were examined by thermogravimetric analysis and differential scanning calorimetry. The surface roughness and morphology of the membranes were studied using atomic force microscopy, X-ray diffraction, and scanning electron microscopy. PVDF-g-PVTri-(TA)3 (C3-TA3) with a degree of grafting of 47.22% showed a maximum proton conductivity of 0.09 S cm−1 at 150 °C and anhydrous conditions. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 1885–1897
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.