Abstract

Oxidative stress plays a key role in contributing to β-amyloid (Aβ) deposition in Alzheimer’s disease (AD). Coenzyme Q10 (Q10) is a powerful antioxidant that buffers the potential adverse consequences of free radicals. In this study, we investigated the neuroprotective effects of Q10 on Aβ-induced impairment in hippocampal long-term potentiation (LTP), a widely researched model of synaptic plasticity, which occurs during learning and memory, in a rat model of AD. In this study, 50 adult male Wistar rats were assigned to five groups: control group (saline); sham group; intraventricular PBS injection, Aβ group; intraventricular Aβ injection, Q10 group; and Q10 via oral gavage and Q10 + Aβ group. Q10 was administered via oral gavage, once a day, for 3 weeks before and 3 weeks after the Aβ injection. After the treatment period, in vivo electrophysiological recordings were performed to quantify the excitatory postsynaptic potential (EPSP) slope and population spike (PS) amplitude in the hippocampal dentate gyrus. LTP was created by a high-frequency stimulation of the perforant pathway. Following LTP induction, the EPSP slope and PS amplitude were significantly diminished in Aβ-injected rats, compared with sham and control rats. Q10 treatment of Aβ-injected rats significantly attenuated these decreases, suggesting that Q10 reduces the effects of Aβ on LTP. Aβ significantly increased serum malondialdehyde levels and total oxidant levels, whereas Q10 supplementation significantly reversed these parameters and increased total antioxidant capacity levels. The present findings suggested that Q10 treatment offers neuroprotection against the detrimental effects of Aβ on hippocampal synaptic plasticity via its antioxidant activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.