Abstract

Combustion synthesis/micropyretic synthesis is a technique in which material synthesis is accomplished by the propagation of a combustion front across the sample. In some cases, the combustion front may propagate in an unstable mode where the propagation velocity and combustion temperature of the combustion front are altered periodically. In this study, the processing conditions leading to unstable combustion reaction were first studied theoretically. The boundary temperatures separating stable and unstable reactions were then determined. The numerical analysis showed that the combustion temperature and the propagation velocity changed periodically during unstable combustion. As the combustion reaction became unstable, the average propagation velocity and the oscillatory frequency of front propagation decreased. The products of unstable combustion synthesis possessed the banded structures, implying the occurrence of the unstable oscillatory propagation, as demonstrated experimentally. In this study, high activation energy combustion (Ti + 2B reaction) and low activation energy combustion (Ni + Al reaction) were both chosen to illustrate the effect of unstable combustion. It is the first time the experimental and numerical results were combined to investigate the temperature and propagation velocity variations during unstable combustion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.