Abstract

Disulfide bridges are unique post-translational modifications (PTM) that contribute to protein architecture and modulate function. This PTM, however, challenges top-down mass spectrometry by cyclizing stretches of the protein sequence. In order to produce and release detectable product ions that contribute to the assignment of proteoforms, regions of a protein encapsulated by disulfide bonds require two fragmentation events: cleavage of the protein backbone and cleavage of the disulfide bond. Traditional collisional activation methods do not cleave disulfide bonds efficiently, often leading to low sequence coverage of proteins that incorporate this feature. To address this challenge, we have evaluated the fragmentation pathways enabled by 193 nm ultraviolet photodissociation (UVPD) and UVPD coupled to electron transfer dissociation for the characterization of protein structures incorporating disulfide bonds. Cleavage of disulfide bonds by either approach results in S-S and C-S dissociation products that result from a combination of homolytic cleavage and hydrogen-transfer processes. Characterization of these product ions elevates interpretation of complex top-down spectra of proteins that incorporate disulfide bonds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.