Abstract

The methodical approach and the cell to study electrochemical processes occurring during cathodic disbondment of a polymer coating are worked out. They permit one to investigate the role of each process separately when supervising the metal substrate potential, electrolyte and polymer coating composition at a metal/polymer/electrolyte interface. The cathodic disbondment of ethylene-vinyl acetate copolymer, polyisoprene and poly(vinyl chloride) coatings are studied. It is found that the cathodic disbondment rate for ethylene-vinyl acetate copolymer coatings depends on double layer parameters at the interface. These parameters are determined by specific volume charge of hydrated cations of the electrolyte, potential of the substrate, the presence of oxygen, surface active substances, etc. Based on the data of IR spectroscopy in internal reflection applied to disbonded films, it is established that during the cathodic disbondment an electron transfer to polymer functional groups, as well as an attacking of the adhesion bonds by active intermediates of oxygen reduction, occurs resulting in an electrochemical degradation of the polymer and an adhesion loss. It is shown that the electrochemical transformations at the steel/poly(vinyl chloride) interface can lead to the appearance of new adhesion bonds, increasing adhesion strength and decelerating the cathodic disbondment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.