Abstract

AbstractAn in situ fracture experiment was carried out in a scanning electron microscope to investigate plastic deformation and strain distribution in the process zone (PZ) located in the immediate vicinity of the crack tip in an Fe–3Si alloy (wt-%) under mixed mode loading conditions. It was observed that plastic deformation occurred by successive activation of a number of slip systems. The strain distribution and shape of the PZ were strongly dependent on the crystallographic orientation of the grain containing the crack tip. The distribution differed from that predicted using near tip blunting calculations and was best expressed by an exponential equation. Additional strain concentrations created by surface defects caused slight perturbations in the overall distribution. Crack propagation started along a coarse slip band which possessed the highest strain. It was found that the maximum strains in the PZ exceeded the uniaxial tensile fracture strain.MST/1404

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.