Abstract

The bulk density of raw corn stover is a major limitation to its large-scale viability as a biomass feedstock. Raw corn stover has a bulk density of 50 kg/m3, which creates significant transportation costs and limits the optimization of transport logistics. Producing a densified corn stover product during harvest would reduce harvest and transportation costs, resulting in viable pathways for the use of corn stover as a biomass feedstock. This research investigated the effect of different process variables (compression pressure, moisture content, particle size, and material composition) on a densification method that produces briquettes from raw corn stover. A customized bench-scale densification system was designed to evaluate different corn stover inputs. Quality briquette production was possible using non-reduced particle sizes and low compression pressures achievable in a continuous in-field production system. At optimized bench settings, corn stover was densified to a dry bulk density of 190 kg/m3. Corn stover with a moisture content above 25%wb was not suitable for this method of bulk densification, and greater cob content had a positive effect on product quality.

Highlights

  • Corn stover is a widely available biomass resource in the United States, in the Midwest where corn is the predominant grain product

  • Transportation vehicles loaded with corn stover are restricted by volume capacity more than weight capacity, a cost-effective means of increasing corn stover bulk density is critical to the feasibility of large-scale production [3]

  • At 8.3%wb moisture content, compression pressure showed a positive output particle density ranging from 330 to 430 kg/m3 across 7.0 to 14.0 MPa (Figure 3). This density was caused by an increase in briquette weight from the additional compression cycles when material was added without producing an increase in briquette axial expansion

Read more

Summary

Introduction

Corn stover is a widely available biomass resource in the United States, in the Midwest where corn is the predominant grain product. Transportation vehicles loaded with corn stover are restricted by volume capacity more than weight capacity, a cost-effective means of increasing corn stover bulk density is critical to the feasibility of large-scale production [3]. Based on the common legal weight restrictions of 36,290 kg for tractor-trailer combinations and the base weight of the tractor and trailer, the minimum bulk density of a briquetted biomass needed to fill these trailers to their weight capacity ranges from 270 to 370 kg/m3. This means a roughly four-fold increase in density from chopped corn stover is needed to optimize transportation efficiency

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.