Abstract

In this paper, the assessment of the electrical and mechanical performance of the Cu nanowire anisotropic conductive film (NW-ACF) flip-chip interconnects has been performed. The influence of bonding conditions (bonding temperature and bonding force) has been studied in order to understand their impact on bonding resistance and shear strength for two types of NW-ACF based on different templates with varying porosity and thickness. An overgrowth-stripping method has been employed to obtain uniform NW (200 and 220 nm) arrays in the track-etch polymer membranes. The bonding substrate was coated with indium so that a diffusion soldering between Cu NWs and bulk In film can occur at a relatively low eutectic point (156.6 <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$^{\circ}{\rm C}$</tex></formula> ). The bonding interface and the fractural surface of NW-ACFs have been characterized by scanning electron microscope and energy dispersive X-ray analysis. Under optimized fabrication conditions, process at the bonding profile of 200 <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$^{\circ}{\rm C}$</tex></formula> , 20 N shows that the <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$z$</tex></formula> -axis resistance can be below 1 <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">${\rm m}\Omega$</tex></formula> and the shear strength can be above 10 MPa, which is very promising for the fine pitch, 3-D interconnection applications in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.