Abstract

ABSTRACTRemoving the native oxide from the poly-Si surface prior to WSix deposition is essential for achieving high quality silicides as well as sufficient film adhesion, particularly after high temperature anneal or oxidation. Contact angle studies have been used to determine initial and time-dependent surface characteristics of several types of silicon surfaces following immersions in HF-based etchants for varying amounts of time. The morphological characteristics of the surfaces before and after exposure to etchants, as well as the relative etch rates and wetting capabilities of the etchants have been used to explain the following results: With respect to initial contact angle studies, the implanted & annealed polycrystalline silicon surface has the lowest contact angle followed by polycrystalline and monocrystalline surfaces. Longer immersion times yield lower initial contact angles. The 0.1% lightly-buffered HF solution results in the highest contact angle followed by the 1% buffered HF solution with surfactant, and the 1% HF solution. With respect to contact angle changes during ambient air exposure time, the asdeposited polycrystalline silicon surface is most stable followed by monocrystalline, and implanted & annealed polycrystalline silicon surfaces. Longer immersion times improve surface stability while the 0.1% lightly-buffered HF solution results in the most stable surface followed by the 1% buffered HF solution with surfactant, and the 1% HF solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.