Abstract
Armor steels have good strength and corrosion resistance; however, due to their difficult machinability, high power consumption occurs. High power consumption increases the cost in machinability studies. Therefore, minimizing power consumption is important for sustainable and cleaner production. In order to minimize power consumption during machining, factors such as workpiece material, cutting tool material and geometry, machining conditions and cutting parameters must be compatible with each other. For this reason, power consumption modeling was carried out in the milling of S960QL structural steel material according to the finite elements method, depending on the cutting parameters. In this context, simulation processes were carried out at three levels for each factor: cutting speed, lateral depth, axial depth and feed rate. The most effective parameter in power consumption was the axial deep of cut. There was a 476% change between the highest and lowest power consumption. It is concluded that finite element modeling is feasible in order to determine the effect of processing parameters on power consumption.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.